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misorientation in other directions. Especially when the 
beam is finely collimated such a misorientation will 
affect the domain distribution N(el) and its neglect is 
therefore not justifiable. 

It is satisfying that, in cases where a distinction can be 
made, partial R values favor the T.N. model, in agree- 
ment also with experimental measurements of the 
pronounced variation of the diffracted intensity of a 
boracite on rotation around the diffraction vector 
(Thornley & Nelmes, 1974). 

Finally, it may be pointed out that though the 
physical formulation of extinction requires further 
study, the present theory extends the domain of 
applicability of an extinction refinement. This is of 
special importance in neutron diffraction studies, 
where extinction is often severe. In further develop- 
ment of formalisms it may be necessary to modify or 
abandon the mosaic model, and to allow for the partial 
coherence of the multiple diffraction process. 
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It is shown that, in order to treat the problem of the propagation of an X-ray wave in a distorted crystal, 
the plane-wave assumption, which is one of the fundamental ingredients in the usual dynamical theory, 
should be removed. Both the incident and the crystal waves should be built as wave packets, i.e. contin- 
uous distributions of K vectors, characterized by their extensions in both reciprocal and direct spaces. 
The characteristic structure of the crystal wave packet for a perfect crystal, and the changes undergone 
by this structure as a result of the crystal distortions, are examined; the criterion for the validity of 
geometrical optics is thus reformulated. 

I. Introduction 

The dynamical theory of X-ray diffraction is generally 
considered to be concerned with the problem of pro- 
pagation of an electromagnetic wave of given fre- 
quency falling in the X-ray region in a medium made 
up of a more-or-less perfect three-dimensional array 
of atoms. As a matter of fact, the papers which ori- 
ginated this kind of studies (Ewald, 1916; Darwin, 
1914; von Laue, 1931) were only concerned with a very 
special kind of waves (i.e. plane waves) incident on a 
perfect crystal (i.e. a medium without any disturbance 
in the three-dimensional ordering of atoms). The wave 
inside the crystal then appears as a superposition of 
four plane waves, the characteristics of which can be 

fully determined from the boundary conditions at the 
entrance surface. It was soon realized that in order to 
deal with real cases one has to extend this ideal treat- 
ment (which we shall call the Ewald-Laue theory) to 
that of a non-plane wave travelling in a non-perfect 
crystal. This has usually been performed by mere 
adaptation of the ideal plane-wave solution: the 
characteristic parameters of the plane-wave solution 
(e.g. the departure from exact Bragg angle) were con- 
sidered to be space varying and one calculated the 
change of this 'variable constant'  necessary to match 
the real propagation conditions. Kato's (1963, 1964a, 
b), Penning's (1961) and Penning & Polder's (1966) 
treatments can be considered as typical examples of 
such a way of dealing with the real problem. For ten 
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years or so, it has come to be realized that this treat- 
ment is not able to take into account all observable 
effects; in particular, the phenomenon of creation of 
new wave fields cannot be satisfactorily handled along 
these lines. In this respect Takagi 's (1962, 1969) 
theory and Taupin's (1964) theory appear to be more 
useful. In these 'general' theories, the wave inside the 
crystal is no longer viewed as a plane wave, changing 
from place to place but still locally plane, as in the 
previous extensions of the Ewald-Laue theory, but as 
an amplitude-modulated wave. It is then possible to 
take into account effects such as diffraction by highly 
distorted regions and the related phenomenon of 
creation of new wave fields (Balibar & Authier, 1967; 
Balibar, 1968, 1969; Authier & Balibar, 1970). 

We feel that the time has come to look at the 
problem from the opposite direction; i.e. we feel that 
a proper treatment of propagation of an electromagne- 
tic wave in a crystal - be it perfect or not - should 
proceed from the more general to the more particular 
case, rather than in the reverse and historical order; in 
other words, we should consider the Ewald-Laue treat- 
ment as a special case of a general solution, rather 
than exhibit the general solution by tackling the 
Ewald-Laue solution in order to increase its range of 
validity. Takagi 's treatment of the crystal wave as a 
modulated wave represents one step in this direction; 
we want to go further and reformulate the dynamical 
theory from the start. In this respect we must represent 
the crystal wave as a more general type of wave, i.e. 
as a wave packet (note that a modulated wave is a 
special case of a wave packet). 

We shall therefore be concerned here with the study 
of the shape of the crystal wave packet induced by a 
vacuum wave packet in a crystal of a general type. In 
the first part we shall show that, owing to the three- 
dimensional periodic structure (it must not be forgotten 
that the main characteristic of the medium is its 
periodicity, even if this periodicity is somehow broken; 
a crystal, even imperfect, is always, to a first-order 
approximation, characterized b y  a three-dimensional 
periodic structure), the crystal wave packet exhibits 
some general features. The problem (studied in the 
second part) is then to determine how the characteris- 
tics of the gross structure of the wave packet will be 
affected by irregularities in the periodicity of the 
medium, in other words by crystal distortions. We 
shall show that by mere comparison of some length 
characteristic of both the wave packet extension and 
the crystal distortion itself, it is possible to predict 
all the known phenomena occuring in real crystals, 
including the so-called 'creation of new wave fields'. 

H. Wave packets - modulation due to extension in real- 
and reciprocal-space 

It is well known that in considering the propagation 
of X-radiations in crystals it is not necessary to keep 
track of the vectorial character of the fields; it is suf- 

ficient to consider the scalar quantities obtained by 
projection of the fields on the plane of incidence and 
perpendicular to it. Under such conditions, any part 
of  the considered wave can be represented by a square 
integrable function of space and time: gt(x,y ,z , t ) .  A 
further simplification ensues from the fact that the 
radiation frequency is kept constant; therefore we need 
not take into consideration any time dependence - 

~ ( x , y , z , t )  ~ ~ ( x , y , z ) .  

Now, application of the Fourier integral theorem 
ensures that any vector belonging to the vector space of 
square integrable functions can be written as a con- 
tinuous linear combination of eigenfunctions of the 
type exp ( ik .  r). Since this is the mathematical form 
corresponding to the usual concept of a plane wave, 
any scalar wave can be viewed as a superposition o f  
plane waves, of different k vectors (wave vectors). 
Such a superposition is usually called a wave packet.  

Two important concepts in the consideration of wave 
packets are those of extension in real space and exten- 
sion in reciprocal space. The wave packet extension in 
reciprocal space is the range in the directions of recip- 
rocal space covered by the k vectors entering the 
plane-wave expansion of the considered wave packet. 
It is well known that, for a given direction of reciprocal 
space, this quantity Akxt is related to the spatial ex- 
tension Ax  i of the wave packet in the corresponding 
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Fig. l. Localized phenomenon versus modulated phenomenon. 
(a) A space-localized phenomenon along one space direction 
(call it r) corresponds to a continuous distribution of wave- 
vectors along the corresponding k direction in reciprocal 
space. This distribution extends over a finite range Ak (left 
part of the figure). The corresponding amplitude distribution 
is that of a localized phenomenon for which a characteristic 
width Al=2n/Ak can be defined (right part of the figure). 
(b) Space-modulated phenomenon corresponds to the super- 
position of two individual plane waves; the corresponding 
k distribution is made up of two 6 functions centred on 
points k=kl  and k=k2 (S=lkl-k21). The corresponding 
amplitude distribution exhibits a modulation for which a 
characteristic modulation wavelength may be defined: 
A=l/Ik2-k~l=l /S .  Note that this amplitude distribution 
extends over infinity. 
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three dimensions of real space, through 

Akx~ . Axi~-2rc , xi=x, y o r z .  (1) 

Note that this relation is a direct consequence of the 
fact that the expansion of the wave packet in plane 
waves is obtained by Fourier transformation of 
g/(x, y,z). 

One must be somewhat careful in interpreting the 
physical meaning of the concept of extension in real 
space. In priniciple, this concept refers to the fact that 
the considered phenomenon does not extend over all 
space but is localized in a definite region of volume 
(AxAyAz), because plane waves of slightly different 
wave vectors give rise to destructive interference except 
in a very localized region [Fig. l(a)]. In the X-ray case, 
we have to deal with a steady flow of photons (or 
radiation); it means that there exists a mean direction 
of propagation (call it z); the proper concept is then 
that of wave front. Relations (1) state that the wave 
front perpendicular to the mean direction of propaga- 
tion z is not infinite but of limited width AxAy (an 
infinite width would correspond to Akx=Aky=O and 
therefore, since Akz ~_0, to a single plane wave and to 
the usual picture of an infinite plane wave. In other 
words, in any xy plane the intensity is zero outside a 
'beam' of width AxAy. 

The physical situation is somewhat different when 
the wave-vector distribution in a given direction k of 
reciprocal space does not correspond to a continuous 

distribution extending over a certain Ak but to only 
two components k~ and k2 separated by a distance S =  
Ik2-kxl; [Fig. l(b)]. It is then impossible to find re- 
gions along the corresponding direction of the real 
space (call it r) where destructive interference occurs; 
the phenomenon has an infinite extension in r, but its 
amplitude is modulated. Interference between the two 
components k~ and k 2 results in beats; the wave is then 
characterized by: 

- a fast oscillation of spatial frequency equal to the 
mean frequency of the two components, (ka + k2)/2 

- a larger oscillation, or modulation, superimposed 
on the first one, the frequency of which is half the dif- 
ference between the component frequencies: Ikl -k~l /  
2=S/2 .  The resultant phenomenon appears as a 
sinusoidal wave with modulated amplitude: the rate 
of the modulation (or modulation wavelength) in the 
direction r is defined as A =2n/S [Fig. l(b)]. 

In summary, combination of a continuous spectrum 
(of extension Ak) of plane waves gives rise to a 
localized phenomenon of finite width 2n/Ak [Fig. l(a)], 
while combination of two separate waves a distance S 
apart in reciprocal space gives rise to a modulated 
phenomenon of modulation wavelength 2n/S [Fig. 1 (b)]. 

In fact there is no clear-cut limit between the second 
case (two plane waves with two different K separated 
by a distance S, resulting in an infinite modulated 
phenomenon) and the first case (a continuous distribu- 
tion of K ranging over a certain AK). One goes gradu- 
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Fig. 2. Transition from modulation to localization. Intermediate situations between those pictured in Fig. l(a) and Fig. l(b) can 
be obtained by letting the two wave-vector distributions of Fig. l(b) get larger and larger, until they rejoin and become.one 
single distribution. The corresponding amplitude distributions exhibit a gradual change from a modulated phenomenon 
extending to infinity to a more and more localized phenomenon. For S= W, the modulation wavelength becomes equal to the 
extension 2re/W of the wave-packet; modulation disappears. 
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ally from one type of effect to the other by letting the 
two distribution functions corresponding to the 
second case get larger and larger and form what we 
might call 'subwave packets' (Fig. 2). A modulation 
effect is bound to occur as long as the finite size of each 
subwave packet (as determined by the width W of each 
K distribution) is larger than the modulation length 
(determined by the separation S between the two sub- 
distributions). In other words, in order to know the 
physical structure of a wave packet made of two 
separated subwave packets, it is necessary to consider 
the ratio ~= W/S=(width of  each subwave packet)/ 
(separation between these subwave packets) (in reci- 
procal space). 

We shall see below that this situation is precisely the 
one encountered in the case of X-ray propagation in 
crystals. 

HI. Structure of the crystal wave packet induced in a 
perfect crystal by an incident vacuum wave 

Let ~u(oi)(r) be a vacuum incident wave of the most 
general type. Thanks to the Fourier integral theorem 
this wave may be described as a superposition of 
plane waves. The only plane waves which are bound 
to propagate with a noticeable amplitude in the crystal 
are those with wave vectors lying within a very small 
angle around the Bragg direction 0e (here AO is the 
width of the rocking curve). Therefore, the structure in 
reciprocal space of the incident vacuum packet is the 
one of a wave packet centred around a mean direction 

(let us call it OP(o ~)) of the wave vectors. The vacuum 
wave-vector distribution is thus characterized by (see 
Fig. 3)" 

- a zero spread in the direction OP(o ~) 
- a non-zero spread JK(0 ~) in the direction To per- 

pendicular to OP(o~); JK(o ~) varies between 0 and 
" KAO, where K--2rc/20 (20" vacuum wavelength). 

The corresponding amplitude distribution is: 

l A(o~)(K u)) exp [i(K (n . r)]dK (n, (2) v/(°~)(r) = aro(i) 

where K (~) represents a wave vector originating at 0 
and with extremity lying on To within JK(0 n. 

From the Ewald-Laue treatment, we know how each 
of the plane components of this wave packet will be 
transformed on entering the crystal; each one will give 
rise to four plane waves, the wave vectors of which are 
fully determined by the usual technique, from the 
knowledge of the dispersion surface and of the direc- 
tion normal to the entrance surface of the crystal. 

The crystal wave packet is then obtained by com- 
bining all the crystal plane waves thus induced by each 
of the components, exp (iK ") . r), of the incident 
vacuum wave packet. We now want to determine the 
structure of this wave packet, i.e. its extension in both 
reciprocal and direct spaces. 

Let us first recall that in both reciprocal and direct 
spaces, we need only consider two dimensions, those 
corresponding to the plane of incidence in real space. 
Let z be the direction in this plane along the reflecting 
planes and x the direction perpendicular to it (Fig. 4). 
Let K~ and Kx be the corresponding directions in recip- 
rocal space. It must be emphasized that the usual 
picture of the dispersion surface does not represent 
the reciprocal space proper, since two different origins 
(O and G) have been chosen for the wave vectors; 
when looking at the extension of the crystal wave 
packet, especially in the Kx direction, one must 
'develop' the usual picture in order to refer all wave 
vectors to the same origin. This procedure is exempli- 
fied in Fig. 4(a) and (b), in the case of the four plane 
waves induced by one single component of the incident 
vacuum packet. Fig. 5 shows the distribution in K 
vectors obtained when dealing with the more general 
case of an incident wave packet characterized by its 
spread JKt0 ~) along To. The composition of the crystal 
wave packet is determined by the fact that the X-rays 
are elastically diffracted by the atoms of the crystal; 
in other words, that all the extremities of the wave 
vectors of its plane-wave components must lie on the 
dispersion surface, which is in fact a cut at E =  
const, of a hypersurface f (E,  K0, K o) (see Stern, Pendry 
& Boudreaux, 1969). Fig. 5, developed as in Fig. 4, 
will show that for a vacuum wave packet of size 

~K(o ) Th 

~ci) To 

0 G 

Fig. 3. Structure of the vacuum incident wavepacket. OL,= 

2rr/20" 2o = vacuum wavelength. 60 m = (OP~o ~, OL,) = mean 
departure from the Bragg angle of the incident wave. 

~ Kolx ~-Kg ~l= Kg~= Ko2 x 

(a) (b) 

Fig. 4. Representation in reciprocal space of the wave packet 
induced in a perfect crystal by a single plane wave. In the 
standard representation (a) (dispersion surface picture), the 
wave vectors may originate either at O or G). In the wave- 
packet representation (b), the wave-vector distribution of the 
considered wave must be referred to the same origin; it is 
then made out of four 6 functions. 
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dK(o °, the induced distribution of K vectors in reci- 
procal space is made of four 'bumps' two along each 
direction Kx and K~. 

III. 1 Wave-packet structure along Kx and x 
(A) Along the Kx direction, the two bumps are 

separated by a distance which is approximately 10(7[ = 
4re sin 0/2 (Fig. 4), where 2 is the crystal wavelength. 
Since the dispersion surface is fairly parallel to the 
Kx axis, the width of each bump is approximately 
dKC0°cos0B, being therefore independent of the 
departure from the Bragg angle 0B. dKt0 ~) cos 0n in 
turn is always less than KAO=(2rc/2)AO(dK(ff)<KAO 
and cos 0n< 1). Therefore a rough estimate of the 
ratio 0=  W/S yields o<AO/sin 20~10 -4, for the Kx 
distribution. 

(B) The structure of the crystal wave packet along 
the x direction can be then inferred from the results of 

§ H. 
(a) Because of the small value of the ratio W/S the 

two subwave packets behave as plane waves, beating 
with each other. This results in a modulation which 
is just what is at the origin of the Borrmann effect in 
the case of an Ewald-Laue wave field. Nevertheless, 
owing to the structure of the original wave packet, 
each of these subwave packets has a structure deter- 
mined both by the structure of the original vacuum 
wave packet and the relative weight allowed by the 
usual Ewald-Laue theory to the plane waves excited 
by each individual component. 

(b) The spatial width of the beam is expected to 
be 2n/dKto ~) cos 0n, with a minimum value of 
2g/KAO cos 0n, corresponding to the case of a sphe- 
rical wave in vacuum. In this case the spatial width of 
the beam is _ (Pendell6sung length)x tg 0B. 

(c) For each of these subwave packets, the position 
inside the Borrmann fan is obtained by looking for 
each z, at the position of the maximum of the am- 
plitude distribution in real space (also called the 
centre of the subwave packet). 

This position is calculated classically by using the 
stationary-phase method since the maximum of the 
amplitude corresponds to those points in real space 

s / 
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Fig. 5. Wave-vector distribution along axes Kz and Kx corre- 
sponding to an incident vacuum wave packet of finite exten- 
sion. This picture, once developed as in Fig. 4, would give 
rise to two 'bumps' along each direction K~ and K~,. 

where the interference is the most constructive, i.e. 
those points where the phase is stationary. 

III. 2 Wave-packet structure along K~ and z 
(A) For a given width dK~o ~ of the incident vacuum 

wave packet, the separation and width of the corre- 
sponding two bumps of the distribution of wave vec- 
tors along Kz in the crystal are very much dependent 
on 60 ~°, the mean departure from the exact Bragg 
angle of the vacuum wave packet under consideration 
(Fig. 3). 

The bump separation S varies continuously from 
2n/A, for d0(~)_~0 (A=Pendell6sung wavelength), 
to (2zc/A)+KAO sin 0B, for d0(°=A0.  Replacing KAO 
by its value 2rc/A sin 0B yields: 

2zc/A < bump separation S<  2 x 2~z/A. (3) 

The width W of each bump also depends on 60 ~°. 
For a given dK(0 ~), its minimum value is obtained for 
60 ~ =0. From the analytic equation of the hyperbolic 
dispersion surface in the (Kx, K~) space, this minimum 
value is evaluated as 

1 2re tg z 0B 
2 A (2rc/A)2 [dK(o')] 2 cos 208 

1 
= 1 sin 2 On ~ [0K(0,,]2 . 

The maximum value of each bump width is obtained 
for d0(°=oo and is just 6K(o ~) sin On. Therefore 

1 
- r r  t ~ ,  v l  x 0 2rc/A [dK~°°]2 sinz On < bump width w <  .~r,'(o sin On • 

(4) 
Note that since 6K(0 ~) is always less than KAO (=Dr/  
A sin On), dK(0 ~) sin On is always less than 2z/A. There- 
fore the ratio Q is always less than one. It ranges from 

Q= 2~/A \ ~ ]  for 60(~)~_0 

to 
aK~o') 

0 = ½ KAO for a0 "~_ oo 

(aK {o~) ,~ 2 6K~o o 
KAO I <~o<-'} KAO (5) 

Fig. 6 shows the evolution of the Kz distribution; 
we show two cases d0 ( °=0  and dO(°=AO, for a given 
dK~0 l). We see that even for a very narrow dK~0 i) com- 
bination with an Ewald-Laue wave field (corre- 
sponding to two infinitely narrow bumps along Kz) is 
not always valid; this approximation is mainly justi- 
fied for d0(°_0 .  As we go over to larger departures 
from the Bragg angle the Kz distribution loses its 
resemblance to an Ewald-Laue wavefield. 

An extreme and important case is that of a spherical 
incident wave. Then dK(o~)=KAO and the width of 
each bump is equal to 2n/A. Since the separation of 
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the bumps is at least 2n/A (Fig. 5) [cf. equation (3)] 
the situation is the one pictured in Fig. 6(c). Note that 
even in this case the ratio of width to separation is 
still less than one; the two bumps are neatly sep- 
arated. 

(B) From this last remark we conclude that along the 
z direction, the structure of the perfect crystal wave 
packet will always exhibit a modulation (which can be 
characterized by its modulation length A) superim- 
posed on a fast oscillation of spatial periodicity it. 

Let us look more closely at what happens in the 
preceding extreme case (spherical incident wave). 
Each bump of the Kz distribution corresponds in real 
space to a subwave packet of size A [cf. equation (1)]. 
Since the modulation wavelength is also equal to A 
we are in a situation where the modulation effect is 
bound to disappear (cf. end of § II). Let us anticipate 
the next section; imagine that, for some reason or 
other, the separation between points/1 and/2 (Fig. 6) 
can become less than 2n/A. Then the modulation effect 
would tend to disappear; as a matter of fact there 
would be beats and destructive interference between 
components belonging to two different subwave 
packets; this effect, which does not occur for 1112 > 
2n/A because the separation is too large, results in a 
disturbance of the modulation, since modulation is 
the result of beats between components belonging to 
close different subwave packets. 

However, that the distance 1112 be equal to 2n/A 
(and not less), in other words the existence of a gap 
of finite width, is precisely what characterizes the 
perfect periodic crystal, as is well known from band 
theory; we may conclude that the existence of a modula- 
tion of periodicity A is what characterizes the propaga- 
tion of X-ray waves in a perfect crystal. We can already 
predict that the main effect of  crystal distortions will 
be to perturb and even destroy the modulation along the 
z direction. Note that, on the other hand, the modula- 
tion along x will not be sensitive to crystal deforma- 
tions; the ratio W]S is less than 10 -s for a perfect 
crystal; it will eventually increase when there are some 
distortions because the separation OG between the 
two bumps in reciprocal space will change, but this 
change will never be important enough to modify sen- 
sibly the ratio W]S; in any case, W]S will never get 
to unity. 

We may summarize the preceding discussion as 
follows: in a perfect crystal, the specific structure of 
the crystal wave is one of a modulated Bloeh wave 
packet. Here 'Bloch wave' refers to the strong coupling 
between components with wave vectors differing by a 
reciprocal-lattice vector (resulting in a modulation of 
periodicity 2 perpendicular to the reflecting planes). 
'Modulated' refers to the modulation in the other 
direction (what is called the Pendell6sung effect in the 
case of an incident single plane wave); these modula- 
tions imply that the crystal wave packet exhibits a 
structure in separated subwave packets along each 
direction in reciprocal space. 

From now on, we shall adopt the following ter- 
minology: 

- Modulated Bloch wave packet=wave inside the 
crystal 

-Subwave  packet along x or z =  amplitude (or 
intensity) distribution of X-rays corresponding to one 
bump in the Kx or K= distribution. A modulated Bloch 
wave packet is the result of interference between these 
subwave packets. 

IV. Structure of the crystal wave packet induced in 
a distorted crystal by an incident vacuum wave 

IV. (A) Effect of the distortions on the reference frame 
in reciprocal space 

As is usually done, we consider only those deforma- 
tions for which it is possible to define a 'local recip- 
rocal lattice'. Let u(r) be the displacement of an atom 
at r, and ro be the position vector of the point where 
the atom which is displaced to r by the distortion was 
originally located. 

r=r0 +u(r0). (6) 

Several authors (Kato, 1963; Penning & Polder, 
1961) have shown that a local reciprocal-lattice vector 
g' can be defined in the vicinity of in the distorted crys- 
tal by 

g'(r) = g -  V[g. u(ro)]. (7) 

g' is now a function of position r inside the crystal. 
Therefore the reciprocal space is locally defined: for 
any point inside the crystal the K= and Kx axes lie 
along and perpendicular to g' respectively. We now 
have to deal with a varying reference frame in recip- 
rocal space. It is convenient, when describing the 
propagation of the crystal wave, to keep O fixed and 
let G change from place to place. 

1 
I 

! : 
L s=~"2 p ,1 

(a) 
~Kz ('~ 0 t i ) .  0 

(b) 

=i 
I 
1 

l (c) 

riO{i}: ,.50 

Spher ica l  
inc iden t  
wave 

r iK{ i ]  = KAO 

Fig. 6. Dependence of the K~ distribution on J01 (mean depar- 
ture of the incident wave from exact Bragg angle). (a) and (b) 
For large departures, the width W of the Kz distribution may 
be fairly large, as compared to their separation S. (e) Extreme 
case of a spherical incident vacuum wave; W/S is still less 
than one. 
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Relation (7) is the starting point for the introduction 
of the concept of the ideal asymptotic crystal: for any 
position r inside the crystal one Can imagine an ideal 
perfect crystal for which the reciprocal-lattice vector 
for the considered reflexion could be precisely g' (r); 
such an ideal crystal extends to infinity but still coin- 
cides in the vicinity of r with the real crystal; in this 
sense it is locally 'asymptotic'  to the real crystal. For 
each of these perfect ideal crystals there exists in recip- 
rocal space a 'local ideal dispersion surface'. 

For a given r inside the crystal, this surface must be 
drawn in the local reciprocal space, i.e. in the local 
reference frame; it is then a hyperbola with axes along 
the local Kx and K~. When going from one point r to 
another r '  the geometrical characteristics of this hyper- 
bola are maintained, since these do not depend on the 
strain (08 is roughly the same and the distance be- 
tween the two apices is unchanged); but the axes of 
symmetry of the hyperbolae have changed, along with 
the reference frames. Nevertheless, since all hyper- 
bolae have the asymptote parallel to the vacuum 
dispersion surface To in common, the change of the 
crystal dispersion surface may be thought of (in our 
picture where O has been kept fixed) as a shift along 
To (Fig. 7). The shift ~ along To between two positions 
of the hyperbola corresponding to a rotation of angle 
30 of the reference frame in reciprocal space is given 
by: 

z=K30 .  (8) 

If we are now interested in the propagation of an 
X-ray wave between r and r' in a continuously* dis- 
torted crystal, we must consider the whole continuous 
family of hyperbolae ranging from H to H '  (Fig. 7). 
Let z be the total shift along To; since z is proportional 
to ] r - r ' l  and to the rate of deformation, the significant 

* By 'continuously' distorted crystal, we mean a crystal 
where f =  0g. u/OSoOSk = const (see Fig. 7). This is of course a 
very special case. But for our purpose (i.e. estimation of the 
strength of the deformations) it will be sufficient. 

0 G sh 

Fig. 7. When going from r to r', the extremity P of a given wave 
vector OP moves across the whole family of hyporbolae 
which fills the gap between H and H';  the exact trajectory 
:from P(r) to P(r') depends on the precise form of the de- 
formation. 

parameter is the value of the gradient of ~, i.e. 

Since 

~ O(K30) 
Olr - r ' l -  = Olr~-r'l " (9) 

1 1 0 
3 0 -  (h.  u) (10) 

sin 208 R OSh 

we see that the important parameter is the second 
derivative f of (g.  u). 

IV (B) Effect of  distortions on a modulated-Bloch-wave 
packet 

Let us now consider a modulated-Bloch-wave 
packet, such as described in § III, travelling in a region 
of good crystal and arriving in a region containing 
distortions. The wave vectors of the various plane wave 
components are submitted to the change in reference 
frame described in § IV (A). If we adopt the point of 
view of a dispersion surface 'gliding' along To, we may 
consider that only one extremity P (Fig. 7) of each K 
vector moves while going through the distorted region. 
The trajectory of this extremity will depend on the 
geometrical characteristics of the crystal deformation. 
Several assumptions have been made concerning the 
way P moves (Penning & Polder, 1961 ; Penning, 1966; 
Kato, 1963a, b, 1964). For our purpose, we need not 
know precisely what this trajectory is, while going 
from r to r ' ;  suffice it to know that the displacement 
of the local ideal characteristic point P will be of the 
same order of magnitude as v, though it may not be 
exactly the same for all points P and may vary with 
the position of P on the local ideal dispersion surface. 
This displacement in P results in a shift 7: cos OB along 
the Kx axis and a shift z sin 0B along the Kz axis; the 
shift is generally more noticeable along Kx than along 
K2. 

If we now consider the total Kx and Kz distributions 
corresponding to the considered modulated-Bloch- 
wave packet, we see that going from r to r '  in the dis- 
torted crystal corresponds, for either K~ or K:, to a 
global shift (either z cos 0B or z sin 0B) of the two 
bumps of the Kx (or Kz) distribution. 

We shall now show that the effect of this global shift 
on the structure of" the modulated-Bloch-wave packet 
is threefold: 

(a) a shift in'position of the centre of each subwave 
packet; 

(b) a change i n t h e  shape of each of these subwave 
packets; this change will affect the amplitude distribu- 
tion both along x and z; 

(c) but in the z direction it may be strong enough so 
as to eventually destroy the modulation along z which 
we have said to be characteristic of the propagation in 
real crystals. : 

(a) Shift in position of the centre of each subwave packet 
A global shift z cos 0B in the Kx distribution (or a 

shift T sin 0B in the Kz distribution), implies a multipli- 
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cation by a phase factor exp(ivcos0BX) [or 
exp (iz sin OBZ)] of the corresponding distribution of 
amplitude. 

Let us first consider the distribution of amplitude 
in the x direction. For a given z, we have identified the 
x position of the centre of each subwave packet with 
the energy trajectory (or 'beam' position) which is 
obtained through the stationary phase method. When 
we multiply the amplitude distribution along x by a 
factor __ exp (iv cos OBX), we add a quantity r cos On 
to the function which has to be stationary. This results 
in a change of the abscissa of the stationary point. 

The same holds for the amplitude distribution along 
z; nevertheless the shift in position of the energy 
trajectory in this direction is less noticeable since the 
shift in the Kz distribution is tg 0B times the one in the 
K: distribution. 

In brief, if it is still possible to define subwave 
packets (we shall see in a moment that the structure of 
the subwave packets may be destroyed) the trajectory of 
these subwave packets, or beams, will be modified by 
the crystal distortions. For a Bragg-Laue type of wave 
we usually say that the wave fields are curved. 

(b) Change in shape of each subwave packet 
Let us first consider the Kz distribution and the corre- 

sponding distribution of amplitude in the z direction. 
Moreover we shall assume that the crystal is made up 
of two parts; a perfect part where the Kz distribution 
is the one described in § III, and a distorted region. We 
shall concentrate on what happens to a single subwave 
packet travelling in the distorted region. 

We must first acknowledge that, unlike in the per- 
fect region, it is no longer possible to characterize once 
and for all the Kz distribution corresponding to the 
subwave packet under consideration (what we called a 
'bump').  

This is possible in the perfect crystal only because 
what happens along z over a distance A is repeated 
over and over identically; in other words, because we 
need not then consider the whole infinite crystal and 
may use a 'reduced scale' A. In other words, for this to 
be valid it is necessary, but not even sufficient, that 
the composition of the wave packet remains unchanged 
over a distance at least equal to A. 

Clearly this condition is not fulfilled when the sub- 
wave packet travels in a distorted region: over a 
distance A each of its components is shifted by an 
amount which can be estimated as z(A)sin 0B; there- 
fore, over a distance A, there is a change in the com- 
position of the subwave packet, which means that A 
can no longer be viewed as the characteristic length, 
or spatial extension, of the considered phenomenon. 
We may alternatively say that, while travelling in the 
distorted crystal, the subwave packet 'picks up' new 
components, components which were not there in the 
perfect region. 

Since what determines the shape of each subwave 
packet is the interference between all the plane-wave 

components which form it, we may conclude that the 
shape of the subwave packet is altered during its pro- 
pagation in a distorted region. Moreover, since this 
change results from a broadening of the corre- 
sponding bump, we may even characterize this change 
as a narrowing of  the amplitude distribution [see rela- 
tion (1)]. 

The same holds mutatis mutandis along the x direc- 
tion. We may therefore expect a narrowing of the 
'beam' when it goes from a region of perfect crystal 
to a region of distorted crystal. This is clearly seen in 
Fig. 8 which shows the amplitude distribution at dif- 
ferent depths of the 'beams' induced by a vacuum 
pseudo plane wave in a crystal containing a disloca- 
tion, as calculated on a computer from Takagi's equa- 
tions (Epelboin, 1975). We see that each subwave 
packet shrinks while passing near the dislocation. The 
width of the amplitude distribution is narrower at the 
level indicated by the arrow than at the entrance sur- 
face. The wave packet then behaves like a wave which 
has been forced to pass through a very narrow slit, 
giving rise to an amplitude distribution which is 
characteristic of diffraction by a slit. 

(c) Change & the modulation. Geometrical optics vs. 
wave optics 

So far, we have been only concerned with the 
change supported by a single subwave packet. But it is 

AO.~ +0,5510"5 

Imax 

k.J 1,6 

2 

400 ~ 6 

J ,, 

z 

Fig. 8. Amplitude distribution (as calculated on a computer 
from Takagi's equations) at different depths in a crystal con- 
taining a single dislocation (the dark circle is the point where 
the dislocation line intersects the plane of incidence). A 
'shrinking' of the amplitude distribution (or a 'narrowing' 
of the beam width) is clearly seen. 
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clear that a broadening in the two bumps along a 
given direction will also affect the distance between 
those bumps and therefore alter the modulation in the 
corresponding direction in reciprocal space. 

As we have already said this effect will be more 
noticeable along Kz (and z) than along Kx (and x) 
because the ratio Q = W/S is closer to 1 along the Kz 
direction than along the Kx direction.* 

Let us consider as an example (which is also an 
extreme case) the case of an incident spherical wave. 
In the region of perfect crystal the K, distribution is 
made up of two bumps of width W~2n/A separated 
by a minimum distance ~2n/A. We immediately see 
that the broadening of each bump following its 
entrance into the distorted region will be sufficient to 
make the two bumps join in a single bump. The 
question then arises whether we can still speak of a 
modulation (or Pendell6sung in the X-ray case). This 
is a mere question of degree. We may state that if the 
broadening over a distance A is small as compared to 
the separation distance S the situation will not be very 
different from the perfect crystal case (as far as 
modulation or Pendell6sung fringes are concerned). 

In other words, as long as 

z(A) sin On < 2rc/A (11) 

the shape of each subwave packet is altered but the 
modulation (or Pendell6sung) effect is not destroyed. 
This situation is exactly the same as the one pictured 
in Fig. 2(b). On the other hand, as soon as z(A) sin On 
becomes of the same order as the bump separation 
2rc/A, the two bumps rejoin to form a single bump; 
the modulation effect disappears [see § II and Fig. 2(c)]. 

If we now want to visualize the situation with ref- 
erence to the concept of ideal local dispersion surface, 
we see that starting from a K distribution localized on 
one branch of the dispersion surface we end with 
a distribution extending over both branches. In fact 
the concept of dispersion surface disappears; it does 
not make any sense to speak of a hyperbola when this 
hyperbola moves sufficiently fast so that over a dis- 
tance equal to the spatial extension of the considered 
phenomenon, branch 1 comes where branch 2 used to 
be. We can also say that the dispersion surface is 
'broadened'  or 'thickened' in such a way that its two 
apices come close to one another. In other words the 
gap in the distribution disappears: the crystalline struc- 
ture is so much altered that the gap (which we know 
from band theory is characteristic of a crystalline 
medium) disappears. 

Returning to the crystal wave packet, we see that 
when the above condition is not fulfilled, the packet 
loses its characteristic structure and propagates in the 
form of two subwave packets; this structure is com- 

* The absolute value of the broadening is larger along Kx 
than along K~ by a factor 1/tg 0B---10 but since the separation 
distance for the same incident ~K~o ° is A/2~_ 106 larger along K~, 
than along Ks, the ratio 0= W/S will be more affected along 
Kz than along K~,. 

pletely destroyed. This is a situation which is compar- 
able to what happens in ordinary optics when diffrac- 
tion of a plane wave (for instance) occurs: then the 
broadening of the Kz distribution is so large that the 
original shape of the wave is completely destroyed; 
from Huyghens theorem we know that we have to deal 
with a continuous sum of spherical waves over the 
aperture responsible for the diffraction, i.e. a contin- 
uous and large distribution of K vectors ('large' 
means large compared to the original distribution). 
By analogy we shall call the above criterion (11) the 
criterion for validity of geometrical optics in the case of 
X-ray propagation. Such a criterion has already been 
arrived at, in other ways, by one of us (Authier & 
Balibar, 1970). Let us now show for a special case 
and a constant gradient of deformation that the two 
criteria are identical. 

The structure in two separate subwave packets 
characteristic of the perfect crystal is maintained as 
long as the broadening z(A) sin On undergone by each 
subwave packet is less than their separation 
~_(2n/A).r(A) can be estimated as IV(0IA. Equations 
(9), (10) and the definition o f f  as the second deriva- 
tive of (g.  u) yield 

1 
sin On v(A)~ 4 cos 0B f A .  (12) 

The maximum value of f is then estimated from 
(11) as 

2n 
f <  -~-y 4 cos On~'KZx g (13) 

(since A = 2 cos 0n in the symmetric case). 

The value of f i n  (13) is also the maximum value one 
obtains by applying the above-mentioned criterion for 
the validity of geometrical optics. 

V. The so-called 'creation of  new wave-fields' 

This phenomenon is usually referred to as an explana- 
tion for the contrast of some fine details in dislocation 
images obtained by topography. Moreover, direct 
experimental evidence of this phenomenon has been 
given by Authier, Balibar & Epelboin (1970). Using a 
double spectrometer, the second crystal of which con- 
tains a single dislocation line, one can arrange that only 
one wave field propagates in the second crystal; it has 
been shown that this single wave field gives rise to two 
wave fields after it has travelled in the very distorted 
region surrounding the dislocation. We shall now 
examine this experiment in view of what we have said 
above. 

A reasonable model for a crystal containing a single 
dislocation is the one of a very severely distorted zone 
sandwiched between two regions of perfect crystal. 
Normally, in the first good region, the energy propa- 
gates with the characteristic two-subwave-packet strut- 

A C 3 1 A  - 3 
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ture; but, if we manage to eliminate one of these, we 
are left with a Kz distribution made up of a single 
narrow bump; this bump is narrow, because we 
assume a 'pseudo-plane' incident wave. While travel- 
ling in the distorted zone, this bump broadens as has 
been explained in § IV (B); the wave which leaves the 
distorted zone corresponds to a Kz distribution made 
up of a single large bump, which may, if the distortions 
are strong enough and extend over a large enough 
distance, extend in reciprocal space over a distance 
larger than A. 

In the second good region where the concept of dis- 
persion surface has some meaning the incident wave 
packet has an extension in reciprocal space larger than 
the separation between the two branches of the dis- 
persion surface; therefore the extremities of some of its 
components lie outside the dispersion surface and thus 
cannot propagate. The good crystal then acts as a 
'filter', and the K~ distribution is expected to 'shrink' 
while going from the distorted region to the one of 
perfect crystal; this is just the reverse phenomenon of 
the one described in § IV and it results in a distribution 
with wave vectors lying on the dispersion surface. As 
distortions become less and less important, the large 
single bump gradually 'resolves' into two separate 
bumps, giving rise to the characteristic two subwave 
packets. In other words, starting with one 'wave field', we 
end with two 'wave fields'. But there is no reason why this 
second wave packet should have the same structure as 
the initial one; this latter was primarily determined by 
the shape of the incident vacuum wave packet, the 
essential features of which are lost in the broadening 
occuring in the distorted zone. On the other hand, the 
features of the subwave packet in the second good re- 
gion are determined by these distortions rather than by 
anything else. Therefore we end with a completely 
different modulated Bloch-wave packet; or translated 
into the wave-field language: 'new wave fields are 
created'. 

VI. Conclusion - a critique of  the usual terminology 

The considerations developed in ~ IV (B) and (C) 
make it clear that the widespread term 'wave field' is 
not adequate for a general description of X-ray pro- 
pagation in distorted crystals. The wave-field concept 
is in fact closely related to the plane-wave approxima- 
tion. Strictly speaking this word should be used only in 
the case of an incident plane wave and a perfect crys- 
tal. Using the proper concept (that of wave packet), we 
have shown that the term 'wave field' could be given 
an extended meaning as long as the wave packet 
maintains its structure in separated subwave packets 
(i.e. in the range of validity of 'geometrical optics'). 

Nevertheless it is impossible to give even an extended 
meaning to the word 'wave field' when this structure is 
lost. Then we have to deal with a Kz distribution with 
no particular structure and we must drop the usual 
terminology and the usual concept of dispersion sur- 
face related to it. This situation is bound to occur in 
strongly distorted crystals. 

Moreover, we have shown that adoption of the wave- 
packet point of view provides a better insight into the 
phenomenon of 'creation of new wave fields'. As a 
matter of fact, the emergence, after propagation in 
strongly distorted regions, of 'wave fields' which did 
not belong to the composition of the initial wave 
packet must be viewed as one of the multiple avatars 
of this wave packet. 

We end by proposing the following analogy: the 
perfect crystal acts as a wave splitter, in the same sense 
that one says that the Michelson apparatus is a beam 
splitter; the effect of crystal perfection is to split any 
incident wave packet into two separate Kz distributions 
which interfere. When the crystal becomes imperfect, 
it loses this characteristic property and even mixes 
components belonging to separate subwave packets, 
in the same way as in the Michelson-apparatus fringes 
fade out when the spectral distribution of the radiation 
becomes large compared to the path difference between 
the two beams. 
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